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Abstract. A generalized Hubbard model based on a molecular approach is used to calculate many electron
wavefunctions of diamond vacancies. We have calculated the oscillator strength of the dipole transition
rates from the ground states of the neutral and negatively charged vacancies. The ratio of the oscillator
strengths is in very good quantitative agreement with the reported optical spectroscopic data. Electronic
configurations in the ground and dipole allowed excited states are presented. With the proposed picture,
the much larger oscillator strength of the negatively charged vacancy with respect to other experimentally
investigated color centers N-V, H3, N3 and H4 is explained.

PACS. 61.72.Bb Theories and models of crystal defects – 61.72.Ji Point defects (vacancies, interstitials,
color centers, etc.) and defect clusters – 71.55.-i Impurity and defect levels

1 Introduction

Color centers in diamond have been attributed to lattice
vacancy and its corresponding defects [1,2]. The simplicity
and rich physical content of the lattice vacancy in diamond
have attracted a lot of interest for the last 50 years [1–6].
Interaction of electromagnetic field with correlated elec-
trons of these centers can be approximated by the dipole
interaction. Dipole transition is the main photon absorp-
tion mechanism in optical absorption spectroscopy, lumi-
nescence and hole burning measurements. These experi-
ments are used to investigate the excited states of these
correlated electrons [7–11].

Despite significant progress in the theoretical calcu-
lations of optical excitation energies of the diamond va-
cancies [12,13], there is no quantitative results on their
oscillator strength which is defined as dipole transition
intensity (rate) per center [14,15]. This is due to the diffi-
culty of a computational method that introduces electron
correlation into wavefunctions.

Calibrating the experimental data of dipole transition
intensities or oscillator strengths for vacancy related de-
fects in diamond, has been used widely to empirically esti-
mate the concentration of vacancy related defects in syn-
thesized diamond [16].

In addition to the conventional spectroscopic experi-
ments for the quantification of absorption centers, color
centers in diamond have been used as Qbits in quantum
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information technology (QIT) [18,17]. The interest in the
excitations of these centers lies in the fact that they allow
spin coherence to be effectively excited and manipulated
by the use of optical laser fields while coupling to the
environment, and hence the long spin coherence lifetime
needed for optical memories and quantum computing is
maintained [18].

For theoretical estimation of the oscillator strengths,
one needs to calculate the Hamiltonian of the system to
obtain accurate eigenfunctions of the vacancy electrons.

Experimental data of dipole transition rates provide
an opportunity to test proposed theories which attempt
to explain electronic states of the vacancies. The resulting
eigenfunctions can be checked by this means.

Until now, Molecular Orbital (MO) and Configuration
Interaction (CI) have been the methods used to manipu-
late excited states and to include tetrahedral symmetry,
Td, (Fig. 1) and spin properties of the vacancy electrons
in their wavefunctions [1].

Construction of a CI wavefunction depends on the se-
lection of the more probable configurations and the re-
sultant wavefunctions are not exact eigenfunctions of the
Hamiltonian.

We report results of the oscillator strength calcula-
tion for the dipole transitions of the neutral and nega-
tively charged vacancies. Explicit forms of the degener-
ate ground and excited states’s wavefunctions are used to
do this calculation. No such calculation exists for these
centers. Quantitative results are in very good agreement
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Fig. 1. Dangling orbitals of first nearest neighbor atoms of
undistorted vacancy in diamond with tetrahedral symmetry.

Fig. 2. Dipole transitions in the diamond vacancies are called
GR1 and ND1 for the neutral and charged vacancies respec-
tively, spatial degeneracy and spin multiplicity of the ground
and excited states are labeled.

with reported optical spectroscopy data for dipole tran-
sition intensities. Electronic configurations in the ground
and excited states will be reported and we will discuss the
role of the ground state spin in the oscillator strength of
the vacancies and other related color centers of diamond.

Two type of the vacancies i.e. neutral (V 0) and nega-
tively charged (V −), have been observed in the irradiated
natural, synthesized and CVD diamond. The V 0 and V −
have four and five electrons which remain in the neigh-
boring atomic sites after creation of the vacancy. In the
V 0 there are four electron of four dangling bonds and in
the V −, there is one extra electron trapped in the vicinity
due to presence of a donor Nitrogen impurity. The neu-
tral and charged vacancies are characterized by the GR1
(1.673 eV) [3] and ND1 (3.149 eV) [4] absorption lines
respectively. These lines are related to the first optically
allowed electronic transition from the ground states of the
vacancies (Fig. 2).

2 Calculations

2.1 Many body wavefunctions calculation

We use a Fock space representation in order to construct
a Hilbert space of many electron basis (Eq. (1))

|ψi〉 = |ai0, ai1, ai2, ..., ai8〉 (1)

ai1 to ai8 are −1 or +1 (for spin down and up on the
site i respectively) to show the occupation condition of
each vacancy atomic orbital. This basis is made from the
atomic orbitals belonging to the four nearest neighbor
(NN) atoms of the vacant site which are oriented inward
into the center of the vacancy. The dangling orbitals of the
NN atoms are labeled a, b, c and d for their connection
to atoms A, B, C and D respectively in Figure 1.

Recent EPR experiments indicate that almost all of
the unpaired electrons of the lattice vacancy in diamond
are localized on the nearest neighbor atoms of the va-
cancy [20]. This implies that considering just these four
dangling orbitals to calculate the electronic structure
properties is reasonable [19].

To solve the problem of the many electron wavefunc-
tions of these systems, we have introduced a generalized
form of Hubbard Hamiltonian. The generalized Hubbard
Hamiltonian for a four (five) electron system considers
e-e correlation effects beyond the usual Hubbard Hamil-
tonian formalism. Correct space symmetry (Td) and spin
properties of the system can be incorporated. Solving this
Hamiltonian for electronic states of the diamond vacancies
allows for a unified and accurate treatment of many elec-
tron energy levels and wavefunctions for both vacancies of
diamond. This is in contrast to a CI approach where its
wavefunctions are not eigenstates of the Hamiltonian.

As the consequence of the spatial symmetry, Td invari-
ance, we were able to appropriately factorize the Hamil-
tonian.

H = t
∑
ij,σ

c†iσcjσ + U
∑

i

ni↑ni↓

+
V

2

∑
i�=j,σσ′

niσnjσ′ +
1
2

∑
ijlm,σσ′

Xijlmc
†
iσc

†
jσ′ cmσ′ clσ (2)

where i, j, l and m are atomic orbital indices of the
vacancy ranging from 1 to 4 for a, b, c and d orbitals
of Figure 1. σ, σ

′
are the spin indices that vary from

1 to 2. ciσ and c†iσ are annihilation and creation op-
erators on the ith site with spin σ, respectively. The
ni↑, ni↓ and niσ are spin occupation number at the
ith site. t is single particle hopping overlap integral. U
and V are the Columbic overlap integrals. Xijlm are
the quantum exchange integrals that with tetrahedral
symmetry (Td), reduce to X1, ..., X5. The shape of the
dangling orbitals a, b, c and d should be given before
calculating Hamiltonian parameters (t, U , V , X1,.., X5).
These parameters are defined as:

t = 〈i|T + V (r)|j〉, U = 〈ii|1
r
|ii〉, V = 〈ij|1

r
|ij〉

X1 = 〈ij|1
r
|ji〉, X2 = 〈ii|1

r
|ij〉, X3 = 〈ij|1

r
|ik〉

X4 = 〈ii|1
r
|jk〉, X5 = 〈ij|1

r
|kl〉 (3)
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Table 1. List of the eight parameters that are used to evaluate energy eigenfunctions of the vacancy. They are calculated based
on Slater type orbital with exponent 1.562 and semi empirical value of U .

t U V X1 X2 X3 X4 X5

Present model (eV) −8.447 12.856 8.17 0.447 2.23 0.396 1.598 0.322

T + V (r) is kinetic energy plus the ionic interaction en-
ergy of electron. The Hamiltonian calculation has been
carried out in Sz basis. Then the Hamiltonian matrix
was transformed to a new one in S2 basis. Finally by ex-
act diagonalization, we obtained complete eigenvectors of
the Hamiltonian. Resultant eigenstates of the Hamiltonian
have definite spin and symmetry degeneracy.

To calculate parameters of equation (3), we used a min-
imal basis set of Slater type orbitals (STO) [21]. We used
an exponent of 1.562 for the vacancy orbitals of Figure 1.
To obtain simultaneously GR1 and ND1 transition ener-
gies, the semi empirical value of 12.855 eV for Hubbard’s U
parameter (one center Coulombic integral) was used. This
value is the same as that used by Coulson and Kearsley,
with a Slater exponent equal to 1.595 to obtain proper
GR1 transition energy [22]. Results are summarized in
Table 1.

2.2 Oscillator strength calculations

To obtain dipole transition rates, one must calculate
〈Ψi|−→r |Ψf 〉 amplitude, where Ψi and Ψf are the initial and
final many electron eigenfunctions of the Hamiltonian for
degenerate ground and excited states. −→r is the dipole
transition operator. After performing the calculation, the
dipole transition intensity from each degenerate ground
states of V 0 such as |Ψi〉 = |1E, 1〉 to any degenerate ex-
cited state such as |Ψf 〉 = |1T, 1〉, was obtained from the
following relation:
∣∣〈1E, 1|−→r |1T, 1〉∣∣2 =


 4∑

i=1

α2
i + cos θ

4∑
i,j=1

αiαj


 |−→r m|2 (4)

where −→r m is defined as 〈m|−→r |m〉 and m represents a,
b, c, and d orbitals. α’s are obtained from the expansion
coefficients of the Hamiltonian eigenfunctions on Fock ba-
sis. Details of the matrix element calculations that lead to
equation (4) are given in Appendix A. The above relation
is general and gives the optical absorption intensities as
a function of the vacancy bond angle (θ) and expansion
coefficients of the many electron eigenfunctions. For an
undistorted vacancy in a tetrahedrally symmetric lattice
such as diamond, the angle is θ = 109.5◦.

Equation (4) was used to calculate transition intensity
of the GR1

I(GR1) ∝ 1
2

2∑
k=1

3∑
l=1

∣∣〈1T, l|−→r |1E, k〉∣∣2 . (5)

Table 2. Intensities of the transitions in the unit of |rm|, from
each twofold degenerate ground state 1E to threefold degener-
ate exited state 1T with zero Sz for the GR1 line.

Ground States |1E, 1〉 |1E, 2〉
Excited states Sz 0 0

|1T, 1〉 0 0.071 0.074

|1T, 2〉 0 0.069 0.016

|1T, 3〉 0 0.15 0.16

Total Rate: - 0.29 0.25

In equation (5), l and k are degeneracy labels. Here we
have summed over all degenerate three fold final states and
averaged over two fold degenerate ground states. At ther-
mal equilibrium, the occupation probability of all n degen-
erate ground states are equal and is 1

n . Therefore, the tran-
sition rate should be averaged over all these states [23].

3 Results and discussions

All calculated values of the |〈1T, l|−→r |1E, k〉|2 for different
degenerate ground and excited states are listed in Table 2.
The numbers in Table 2 are for |−→r m| = 1. By putting
these numbers into equation (5), we obtain:

I(GR1) ∝ 0.27 |−→r m|2 . (6)

With a similar calculation for the ND1 transition we ob-
tained the values of |〈4A, l|−→r |4T, k〉|2 as summarized in
Table 3. These transitions are from the four-fold degen-
erate ground state |4A, k〉 to the twelvefold excited state
|4T, l〉, all with S = 3

2 . In the absence of L-S coupling the
transition between states with the same Sz are allowed
and their transition rates are nonzero. Our results in Ta-
ble 3 are consistent with this. From Tables 2, 3, we found
that for the transitions from any degenerate ground state
to all degenerate excited states, total transition rates for
each vacancy are almost equal. This means that, in a typ-
ical spectroscopic experiment, the balanced population of
the degenerate ground states does not change with illumi-
nation of light [23]. The slight difference can be attributed
to the approximation in using STO for dangling bonds of
Figure 1.
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Table 3. Intensities of the transitions in the unit of |rm|, from each fourfold degenerate ground state 4A to twelvefold degenerate
exited state 4T with available Sz for the ND1 line.

Ground states |4A, 1〉 |4A, 2〉 |4A, 3〉 |4A, 4〉
Excited states Sz −3/2 −1/2 1/2 3/2

|4T, 1〉 −3/2 0.33 0 0 0

|4T, 2〉 −3/2 0.33 0 0 0

|4T, 3〉 −3/2 0.33 0 0 0

|4T, 4〉 −1/2 0 0.05 0 0

|4T, 5〉 −1/2 0 0.47 0 0

|4T, 6〉 −1/2 0 0.31 0 0

|4T, 7〉 1/2 0 0 0.38 0

|4T, 8〉 1/2 0 0 0.00 0

|4T, 9〉 1/2 0 0 0.46 0

|4T, 10〉 3/2 0 0 0 0.49

|4T, 11〉 3/2 0 0 0 0.12

|4T, 12〉 3/2 0 0 0 0.22

Total Rate: - 0.99 0.83 0.84 0.83

Again with the same procedure as we used for theGR1,
we will end up with:

I(ND1) ∝ 1
4

4∑
k=1

12∑
l=1

∣∣〈4T, l|−→r |4A, k〉∣∣2 (7)

I(ND1) ∝ 0.87 |−→r m|2 . (8)

So the relative intensities of the ND1 to GR1 line is:

I(ND1)
I(GR1)

= 3.2. (9)

The strength A of the absorption spectra in a zero phonon
line is defined as the integral over the zero phonon line:

A =
∫
µ(ν)d(hν) (10)

where µ(υ) is the absorption coefficient in cm−1, measured
at 77 K and integrated over the zero phonon absorption
line, and hν is the photon energy in meV. In these units
the concentration in cm−3 of the neutral and negatively
charged vacancies are:[

N0
]

= AGR1/fGR1 (11)[
N−]

= AND1/fND1 (12)

where fGR1 is the oscillator strength of the GR1 that is
(1.2 ± 0.3)× 10−16 [16] and fND1 is oscillator strength of
ND1 transition which is equal to (4.8 ± 0.2) × 10−16 [16]
or (3.9 ± 1) × 10−16 [11,16,24].

Our calculated value from equation (9) is in
very good agreement with the reported experimental
data 3.25 [10,24] and 4 [10,11] for the relative intensity
of the ND1 to GR1.

The contribution of the allowed electronic configura-
tion in the ground and dipole allowed excited states of

Fig. 3. Percentage of the contribution of each possible elec-
tronic configurations in the ground and excited states of the
neutral vacancy in diamond.

the V 0 are summarized in Figure 3. Numbers in the paren-
thesis in this figure are the occupation numbers of atomic
orbitals of the vacancy. For the V 0, our calculation shows
that the ground state is the spin singlet state 1E in agree-
ment with experiment (Fig. 2). Therefore, all possible or-
bital occupations are allowed in the ground state. The al-
lowed electronic configurations of four electrons in four NN
site are (1,1,1,1), (2,1,1,0) and (2,2,0,0). They are Hund
, singly paired and doubly paired configurations respec-
tively.

As shown in Figure 3, all possible electronic configu-
rations are present in the ground state 1E.

From this figure, the ground state is mainly (1,1,1,1)
configuration (56%), where all of the vacancy atomic or-
bitals are half filled. This means that the probability
of finding the Hund configuration in the ground state
of V 0 is 56%. In (1, 1, 1, 1) or Hund configuration, the
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Fig. 4. Percentage of the contribution of each possible elec-
tronic configurations in the ground and excited states of the
negative vacancy in diamond.

electrons have maximum separation distance, which result
to lowering the Coulombic repulsion energy of the system.
The contribution of the paired configuration, (2,1,1,0) is
around 40%. As we expect, the contribution of the high en-
ergy (doubly paired) (2,2,0,0) configuration in the ground
state is negligible at 4%. This is due to the high Coulombic
repulsion of this fully paired configuration.

For the ND1 (V −), available electronic configurations
for distributing the five electrons of the V − in four nearest
neighbor sites are (2,1,1,1) and (2,2,1,0). Our calculation
gives 3

2 for the spin of the ground state 4A in agreement
with experiment (Fig. 2). Hence the dipole allowed excited
state should have the same spin (4T state in Fig. 2). Due
to this fact, the only allowed configuration for these states
is (2,1,1,1) which is a Hund state with maximum value of
spin. Hence there is no room for configuration change via
ND1 optical excitation (Fig. 4). In other words, the high-
est value of the ground state spin of the V − restricts the
allowed spatial distribution of the ground and the dipole
allowed excited state to the (2,1,1,1) configuration, which
has a minimum number of paired electrons. This signif-
icantly increases the overlap of the ground and excited
state wavefunctions and the corresponding dipole transi-
tion amplitude 〈Ψi|−→r |Ψf 〉 for ND1 transition. This is in
contrast to the GR1 transition in V 0 in which the ground
and excited states have lowest value of the spin, among
the allowed values 0, 1 and 2. There will be a different
contribution of these configurations in the ground and ex-
cited state (Fig. 3). This reduces the overlap integral of the
wavefunctions and consequently the related dipole transi-
tion amplitude in the low spin transition GR1.

Let us discuss the relative oscillator strength in other
color centers of diamond. By following the loss of GR1 and
ND1 absorption during annealing and with a further as-
sumption that all vacancies are trapped at nitrogen in type
Ia diamond, Davies et al. were able to measure the relative
oscillator strengths of the V −, Nitrogen vacancy (N-V)

Table 4. Calibrated oscillator strength of the different color
centers in diamond [10,16] and the spin values of their ground
state.

Color center V − NV N3 V 0 H3 H4

Ground state spin 3
2

1 1
2

0 0 0

Calibrated strength 4.8, 3.9 1.4 0.9 1.2 1 1

and aggregations of the one paired (H3) and two paired
impurity nitrogen atoms (H4) with a single vacancy [10].

Their findings are summarized in Table 4. The com-
plementary work for obtaining absolute value of the ND1
transition strength based on EPR experiment [11,24] and
the absorption intensity of the N3 center (3 nitrogen atoms
around one vacancy) are also summarized in this table.

The value of the oscillator strength of N-V, N3, V 0,
H3 and H4 centers are almost the same but for ND1 case,
the value is four times larger (Tab. 4). Our calculation
(Eq. (9)) agrees quantitatively with the resultant strength
ratio of fND1/fGR1 [10,11,24] which one can obtain from
Table 4. Calculation results also can explain the much
greater oscillator strength of the ND1 among other opti-
cal absorption lines. The spin of the ground state for N-V
and N3 are 1 [26,27] and 1

2 [28] respectively (Tab. 4). The
V 0, H3 and H4 are non paramagnetic (S = 0) [25]. Hence
it is the V − transition whose ground state has the highest
available spin value (Hund law). The low values of spin
in the ground state of the other color centers reduce the
overlap integral of their ground and excited state wave-
functions for the dipole amplitude. This is much smaller
than the dipole amplitude of Hund states of the V −.

4 Conclusion

The paper reports a computational method to calculate
dipole transition rates in color centers of diamond. Cor-
relation effects are also included in this calculation. We
calculated the many electron wavefunctions of the gener-
alized Hubbard Hamiltonian using an atomic orbital basis
for the diamond vacancies. Our approach, unlike config-
uration interaction, can give different forms of degener-
ate wavefunction. The oscillator strength of the dipole
transition intensities for the well known GR1 and ND1
optical absorption bands were calculated based on these
many electron wavefunctions. Result is in good quanti-
tative agreement with recent experimental data for rel-
ative oscillator strengths of the V 0 and V −. The higher
absorption intensity of the negatively charged vacancy is
related to the implementation of Hund rule in this cen-
ter. The highest value of spin for the ground and excited
states restricts the orbital occupation condition to only
one available configuration with a minimum number of
paired electrons. This increases the overlap integral of the
ground and excited state of V − wavefunctions. This is in
contrast to the situation in the centers with a low spin
value such as N-V, N3, H3, H4.
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Appendix A

For V 0 and V − both ground and excited states have def-
inite degeneracy which we must consider. Therefore for
|Ψi〉 and |Ψf 〉 we define:

∣∣Ψk
i

〉
=

∑
j

αik
j |ϕj〉 (13)

∣∣Ψ l
f

〉
=

∑
j

αfl
j |ϕj〉 (14)

where |ϕj〉 are Hilbert space bases. We used a Fock repre-
sentation of equation (1) which is equivalent to determi-
nant Slaters [21]. αik

j ’s and αfk
j ’s are calculated expansion

coefficients of the Hamiltonian eigenfunctions for each de-
generate state. k and l are degeneracy labels for initial
and final states with their upper limits of 2, 3 (V 0) and 4,
12 (V −) respectively. With the above definition we have:

〈
Ψ l

f |−→r |Ψk
i

〉 ≡
∑
jj′

αik
j α

fl

j′

〈
ϕj |−→r |ϕj′

〉
. (15)

For simplifying calculations, we considered that
〈ϕj |−→r |ϕj′ 〉 terms were dominant. In such conditions ϕj

and ϕj′ have the same orbital occupation condition.
For example one class of such terms are 〈abcd|−→r |abcd〉
terms. These many electron integrals can be calculated
by expanding them to single electron integrals as follows:

〈abcd |−→r | abcd〉 = 〈a |−→r | a〉 + 〈b |−→r | b〉
+ 〈c |−→r | c〉 + 〈d |−→r | d〉 +O(s2). (16)

In the above equation we neglect terms which are pro-
portional to s2 where s is the overlap integral of dangling
orbitals 〈a|b〉. Finally we have:

〈
1T, l |−→r |1E, k

〉
=

∑
m

βlk
m
−→r m (17)

where −→r m ≡ 〈m|−→r |m〉 and m represents a, b, c, and d or-
bitals. Since the −→r m’s are not orthogonal and they have
equal length, after squaring the amplitude of equation (17)
to find the transition rates, we will have:

∣∣∣
〈

1E, 1 |−→r |1 T, 1
〉∣∣∣2 =

 4∑
i=1

α2
i,lk + cos θ

4∑
i,j=1

αlk
i α

l′k′
j


 |−→r aa|2 (18)

where αlk are coefficients which were obtained after squar-
ing equation (17).
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